1 A rock of mass 8 kg is acted on by just the two forces $-80 \mathbf{k} \mathrm{~N}$ and $(-\mathbf{i}+16 \mathbf{j}+72 \mathbf{k}) \mathrm{N}$, where \mathbf{i} and \mathbf{j} are perpendicular unit vectors in a horizontal plane and \mathbf{k} is a unit vector vertically upward.
(i) Show that the acceleration of the rock is $\left(\frac{1}{8} \mathbf{i}+2 \mathbf{j} \quad \mathbf{k}\right) \mathrm{ms}^{-2}$.

The rock passes through the origin of position vectors, O , with velocity $(\mathbf{i}-4 \mathbf{j}+3 \mathbf{k}) \mathrm{m} \mathrm{s}^{1}$ and 4 seconds later passes through the point A .
(ii) Find the position vector of A .
(iii) Find the distance OA.
(iv) Find the angle that OA makes with the horizontal.

2 Fig. 4 shows the unit vectors \mathbf{i} and \mathbf{j} in the directions of the cartesian axes $\mathrm{O} x$ and $\mathrm{O} y$, respectively. O is the origin of the axes and of position vectors.

Fig. 4
The position vector of a particle is given by $\mathbf{r}=3 t \mathbf{i}+\left(18 t^{2}-1\right) \mathbf{j}$ for $t \geqslant 0$, where t is time.
(i) Show that the path of the particle cuts the x-axis just once.
(ii) Find an expression for the velocity of the particle at time t.

Deduce that the particle never travels in the \mathbf{j} direction.
(iii) Find the cartesian equation of the path of the particle, simplifying your answer.

3 In this question, the unit vectors () and () are in the directions east and north.
Distance is measured in metres and time, t, in seconds.
A radio-controlled toy car moves on a flat horizontal surface. A child is standing at the origin and controlling the car.

When $t=0$, the displacement of the car from the origin is $\binom{0}{-2} \mathrm{~m}$, and the car has velocity $\binom{2}{0} \mathrm{~ms}^{-1}$.
The acceleration of the car is constant and is $\binom{-1}{1} \mathrm{~ms}^{-2}$.
(i) Find the velocity of the car at time t and its speed when $t=8$.
(ii) Find the distance of the car from the child when $t=8$.

4 At time t seconds, a particle has position with respect to an origin O given by the vector

$$
\mathbf{r}=\binom{8 t}{10 t^{2}-2 t^{3}},
$$

where $\binom{1}{0}$ and $\binom{0}{1}$ are perpendicular unit vectors east and north respectively and distances are in metres.
(i) When $t=1$, the particle is at P . Find the bearing of P from O .
(ii) Find the velocity of the particle at time t and show that it is never zero.
(iii) Determine the time(s), if any, when the acceleration of the particle is zero.

5 A particle of mass 5 kg has constant acceleration. Initially, the particle is at $\binom{-1}{2} \mathrm{~m}$ with velocity $\binom{2}{-3} \mathrm{~m} \mathrm{~s}^{-1}$; after 4 seconds the particle has velocity $\binom{12}{9} \mathrm{~m} \mathrm{~s}^{-1}$.
(i) Calculate the acceleration of the particle.
[2]
(ii) Calculate the position of the particle at the end of the 4 seconds.
(iii) Calculate the force acting on the particle.

6 A toy boat moves in a horizontal plane with position vector $\mathbf{r}=x \mathbf{i}+y \mathbf{j}$, where \mathbf{i} and \mathbf{j} are the standard unit vectors east and north respectively. The origin of the position vectors is at O . The displacements x and y are in metres.

First consider only the motion of the boat parallel to the x-axis. For this motion

$$
x=8 t-2 t^{2} .
$$

The velocity of the boat in the x-direction is $v_{x} \mathrm{~m} \mathrm{~s}^{-1}$.
(i) Find an expression in terms of t for v_{x} and determine when the boat instantaneously has zero speed in the x-direction.

Now consider only the motion of the boat parallel to the y-axis. For this motion

$$
v_{y}=(t-2)(3 t-2),
$$

where $v_{y} \mathrm{~m} \mathrm{~s}^{-1}$ is the velocity of the boat in the y-direction at time t seconds.
(ii) Given that $y=3$ when $t=1$, use integration to show that $y=t^{3}-4 t^{2}+4 t+2$.

The position vector of the boat is given in terms of t by $\mathbf{r}=\left(8 t-2 t^{2}\right) \mathbf{i}+\left(t^{3}-4 t^{2}+4 t+2\right) \mathbf{j}$.
(iii) Find the time(s) when the boat is due north of O and also the distance of the boat from O at any such times.
(iv) Find the time(s) when the boat is instantaneously at rest. Find the distance of the boat from O at any such times.
(v) Plot a graph of the path of the boat for $0 \leqslant t \leqslant 2$.

